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Bone metabolism is a continual cycle of bone growth and resorption that is carefully orches-
trated by the dynamic relationship between osteoclasts, osteoblasts and an array of hormonal 
and regulatory influences. The relative levels of these signaling molecules dictate whether 
healthy, balanced bone metabolism ensues. Disturbances to this delicate equilibrium where 
resorption is greater than growth can weaken the skeletal architecture and put one at risk 
for the development of chronic and debilitating diseases such as Osteoporosis.

Osteoporosis
Osteoporosis is a disease where bone mass atrophy and the destruction of the microarchi-
tecture of bone tissue increases the risk of fractures. It becomes more common with age and 
is the most common reason for a broken bone among the elderly. About 15% in their 50s and 
70% of those over 80 are affected; it is more common in women than men.

Bones that commonly break include the vertebrae, the bones of the forearm, and the hip. 
Until a broken bone occurs there are typically no symptoms. Bones may weaken to such a 
degree that a fracture may occur with minor stress or even spontaneously. Chronic pain and a 
decreased ability to carry out normal activities may follow a fracture.

Bone loss increases after menopause due to lower levels of estrogen. Osteoporosis may also 
occur due to a number of diseases or treatments, including alcoholism, anorexia hyperthy-
roidism or kidney disease. 

Certain medications increase the rate of bone loss, including some antiseizure medications, 
chemotherapy, proton pump inhibitors, selective serotonin reuptake inhibitors, and glucocor-
ticosteroids.  Smoking and too little exercise are also risk factors. Osteoporosis is defined as a 
bone density of 2.5 standard deviations below that of a young adult. This is typically measured 
by dual-energy X-ray absorptiometry. 

Efforts to prevent broken bones in those with osteoporosis include a good diet, exercise, and 
fall prevention. Lifestyle changes such as stopping smoking and not drinking alcohol may help. 
Studies showed that Biphosphonate medications are useful in those with previous broken 
bones due to osteoporosis. In those with osteoporosis but no previous broken bones, they are 
less effective. A number of other medications may also be useful. 

History of PEMFs on bone repair
In 1892, Wolf indicated that mechanical stress determines bone growth and remodelingi. In 
1953, Yasuda revealed that bending the long tubular bone is related with the development 
of electric currents and this instance is defined as piezoelectric phenomenonii. Since then, 
the theory that electrical stimulation is the path for bone formation in response to applied 
load has been gradually recognized, and various devices have been developed to produce 



electrical stimulation for promoting the healing of bone fracture. In 1978, Bassett first applied 
noninvasive PEMFs to treat delayed union or non-union fractures and have achieved good 
clinical effectiii. Shortly thereafter, PEMFs were approved as a safe and effective method for 
treating delayed union or non-union fractures by the US Food and Drug Administration (FDA)
iv,v.Inductive coupling is the rationale for the application of PEMFsvi. PEMF devices consist 
of a wire coil wherein a current passes and a pulsed magnetic field is generated. The pulsed 
magnetic field, in turn, induces a time-varying secondary electrical field within the bone. The 
secondary electrical field is dependent on the characteristics of the applied pulsed magnetic 
field and the tissue properties. Magnetic fields of 0.1–20 G are usually applied to produce 
electrical fields, ranging from 1 mV/cm to 100 mV/cm in the bonevii. Through the PEMF device, 
a time-varying electrical field is produced to simulate the normal response of bone cells physi-
ologically to the applied mechanical stressviii, and the subsequent enhanced growth and 
remodeling bioeffects on the bone are initiated by the time-varying electrical field.

PEMFs on Osteoporosis and Fractures
In numerous studies PEMF could demonstrate its positive effects on bone metabolism and 
in the healing of fractures by stimulating osteoblasts, calcium uptake and its mineralization 
in vitro and in vivo and is therefore a suitable addition for the treatment of osteoporosis and 
fracturesix,x,xi,xii,xiii,xiv,xv,xvi,xvii,xviii,xix. 

What exactly happens on a cellular level?
Recently, considerable research progresses have been made in exploring the underlying cellular 
and subcellular mechanisms of PEMFs promotion effect in bone repair. Several key signaling 
pathways during the osteogenesis and angiogenesis which are two essential aspects for bone 
repair, were revealed by various studies when the bone was exposed to PEMF including Ca2+, 
Wnt/β-catenin, mitogen-activated protein kinase (MAPK), fibroblast growth factor (FGF) and 
vascular endothelial growth factor (VEGF), transforming growth factor (TGF)- β/bone morpho-
genetic proteins (BMP), insulin-like growth factor (IGF), Notch, and cAMP/protein kinase A 
(PKA)xx.

For those still interested in the very detailed signaling pathways during the osteogenesis 
and angiogenesis that PEMF takes influence on I recommend Yuan J et al. 2018. Underlying 
Signaling Pathways and Therapeutic Applications of Pulsed Electromagnetic Fields in Bone 
Repairxx and quote:



Ca2+ Signaling
Intracellular Ca2+ is generally considered as one of the main actors to translate the PEMF 
signal into a biological signal. Many studies revealed that PEMF signal passes through the 
cell membrane to set up a time-varying electrical field within the cytosol; this electrical field 
subsequently induces the release of intracellular Ca2+, leading to increases in cytosolic calcium, 
activated calmodulin and the enhancement of bone cell viabilityviii,xxi,xxii.
Voltage-gated Ca channels (VGCCs), especially the L type, play a pivotal role in intracellular Ca2+ 
release. PEMF exposure significantly elevated the expression levels of VGCCs in mesenchymal 
stem cells (MSCs) during osteogenesisxxiii,xxiv. PEMF-initiated Ca2+ signaling strikingly accel-
erates the osteogenic differentiation of MSCs as represented by the upregulated osteogenic 
markers, such as collagen I and ALP, and the increased deposition of extracellular calciumxviii. 
Accumulated studies indicated that increased intracellular Ca2+ caused by PEMF stimulation 
leads to increased nitric oxide levels, which in turn increases the synthesis level of cGMP and 
the subsequent activation of protein kinase G. Through the Ca2+/nitric oxide/ cGMP/protein 
kinase G pathway, PEMFs promote osteoblast differentiation and maturation, exert their 
therapeutic effect on bone repair, and remarkably reduce the pain of patients by modulating 
the release of inflammatory cytokines, such as interleukin-1 beta (IL-1β)xvixvi,xxv,xxvi,xxvii,xxvii

i,xxix. Moreover, the activated Ca2+/nitric oxide/cGMP cascade is also closely related to the 
increased expression of FGF-2 and VEGF, two key regulators of angiogenesisxxiii. In addition, 
the crosstalk between Ca2+, ERK, PKA, and PKG signaling under PEMF stimulation was also 
reportedxv,xviii. All these findings show the prominent role of Ca2+ signaling in PEMFs-induced 
bone repair.

Wnt/β-catenin signaling pathway
Extracellular Wnt ligands bind to their seven-pass transmembrane Frizzled receptors simul-
taneously with a co-receptor of the arrow/Lrp family (e.g., LRP5 and LRP6), thus stabilizes 
β-catenin in the cytoplasm and initiates the canonical Wnt/β-catenin signaling pathwayxxx. 
This signaling pathway is conserved throughout metazoans and is essential for cell prolifer-
ation, differentiation, development, self-renewal, and cell fate determinationxxxi,xxxii.

Much evidence has suggested that the Wnt/β-catenin signaling pathway acts as a key 
regulator in PEMF-induced osteogenic differentiation of mesenchymal progenitor cells, bone 
formation and repair. For instance, in vitro assay studies, gene and protein expressions of 
canonical Wnt/β-catenin signaling pathway, including Wnt1, LRP6, and β-catenin, were all 
significantly enhanced after PEMF exposure at both proliferation and differentiation stages of 
osteoblast-like MC3T3-E1 cellsxxxiii. In addition, except the upregulation of mRNA expressions 
of Wnt1, Wnt3a, LRP5 and β-catenin in tissue derived mesenchymal stem cells (ADSCs), PEMFs 
intervention could also reduce the expression of dickkopf1 (DKK1) which usually acts as an 
inhibitor of Wnt signaling pathwayxxxiv. Furthermore, the enhanced Wnt/β-catenin signaling 
induced by PEMFs notably elevated the expression of proliferation phase related target genes, 



Ccnd 1 and Ccne 1, and differentiation phase related genes, ALP, OCN, COL1, and Runx2, in 
osteoblast cells, which accelerated the osteoblasts proliferation, differentiation, and mineral-
ization, three pivotal processes of bone formationxxvii,xxviii. On the other hand, according to in 
vivo assay studies, PEMFs effectively reversed the bone mass loss and deterioration of bone 
microarchitecture analyzed by microCT and attenuated biomechanical strength deterioration 
evaluated by three-point bending test in hind limb-suspended ovariectomized rats through 
the Wnt/Lrp5/β-catenin signal pathwayxxxv,xxxvi, indicating that activating this pathway by 
PEMF exposure is beneficial for bone disordersxxxvii.

MAPK pathway
The MAPK pathway is important in the transduction of extracellular signals to various cellular 
compartments and is involved in cell proliferation, differentiation, migration, and deathxxxviii. 
Conventional MAPKs include Erk1/2, JNK, and p38. The MAPK pathway plays a critical role 
in PEMF-induced osteogenic differentiation and osteoblasts’ viability and function. For 
example, extremely low-frequency pulsed electromagnetic field (ELF-PEMF) treatment could 
significantly increase the total protein content, mitochondrial activity, and ALP activity and 
enhance the formation of mineralized matrix of human osteoblasts with a poor initial osteo-
blast function through triggering the ERK1/2 signaling pathway. When the cells were treated 
with U0126, an inhibitor of the ERK1/2 signaling cascade, the positive effects of the ELF-PEMF 
treatment on osteoblast function were abolishedxxxix. Other studies also revealed that the 
MEK/ERK signaling pathway regulated the promoting effects of PEMF on bone marrow mesen-
chymal stem cell (BMSC) proliferation, expression of osteogenic genes (RUNX2, BSP, OPN), 
ALP activity, and calcium depositionxviii,xxviii,xl,xli. Additionally, one study reported that the p38 
MAPK pathway is involved in the increased production of collagen synthesis in osteoblast-like 
cells stimulated by ELF-EMF exposurexlii. Interestingly, a recent research suggested that a 45 
Hz EMF promoted the osteogenic differentiation of adipose-derived stem cells, whereas a 7.5 
Hz EMF directly augmented the expression of osteoclastogenic markers and regulated the 
osteoclast differentiation through ERK and p38 MAPK activationxliii. This finding indicated that 
PEMFs can simultaneously influence osteoblastic and osteoclastic activities under defined 
electromagnetic conditions.

FGF and VEGF pathways
Osteogenesis and angiogenesis, including cell–cell communication between blood vessel 
cells and bone cells, are essential for bone repair. Many studies suggested that PEMFs play 
a promotion effect not only in osteogenesis but also in angiogenesisxliv,xlv,xlvi,xlvii. PEMFs 
may facilitate bone repair by augmenting the interaction between osteogenesis and blood 
vessel growth. During this complex process, FGF and VEGF, two key angiogenesis-related 
cytokines, may play critical regulatory roles. The FGF signaling pathway has been demon-
strated to contribute in the regulation of proliferation and differentiation of osteoblasts and 



in angiogenesisxlvii and the VEGF signaling pathway has also been reported to be involved in a 
reciprocal, functional, and regulatory relationship between osteoblasts and endothelial cells 
during osteogenesisxlix,l,li. A study indicated that a 150% increase in FGF-2 mRNA and a fivefold 
elevation of FGF-2 proteins in human umbilical vein endothelial cells (HUVECs) exposed to 
PEMF were monitored and the release of functional FGF-2 from PEMF-stimulated HUVECs 
specially increased endothelial cell proliferation and tubulization, processes that are important 
for vessel formationlii. KDR/Flk-1, a tyrosine kinase receptor of VEGF, is autophosphorylated 
in response to VEGF stimulation and is capable of transducing VEGF signals. One research 
has revealed that PEMF stimulation significantly increased the expression and phosphorylated 
levels of KDR/Flk-1 and promoted proliferation, migration, and tube formation of HUVECsxxxix. 
The pro angiogenesis effect through the FGF and VEGF signaling pathways of PEMFs provide 
another explanation for the therapeutic function of PEMFs in bone repair. Many studies are 
still required to further clarify the efficacy of FGF and VEGF in PEMF-induced bone repair.

TGF-β/BMP pathway
TGF-βs and BMPs, as multifunctional growth factors, belong to the TGF-β super family. The 
interaction of TGF-βs/BMPs with TGF-β specific type 1 and type 2 or BMP serine/threonine 
kinase receptors initiates the signaling cascade via canonical (or Smad-dependent pathways) 
and non-canonical pathways (or Smad-independent signaling pathways)liii. The TGF-β/BMP 
signaling pathway plays an important regulatory role in bone repairliv,lv,lvi,lvii,lviii,lix. It is also 
confirmed to be involved in PEMF-induced osteogenesis. Several studies demonstrated that 
PEMF stimulation could significantly increase the expression of TGF-β in both osteoblast-
like cells and cells from atrophic or hypertrophic non-unionsxiii,lx,lxi,lxii,lxiii. Moreover, a recent 
research suggested that PEMFs activated the TGF-β signaling via Smad2 in differentiated and 
mineralizing osteoblasts and augmented the expression of osteoblast differentiation marker 
genes, such as ALP and type I collagen, and exerted its osteogenesis promotional function . 
The expression of BMPs in osteogenesis was also enhanced by PEMFs according to in vitro and 
clinical studieslxv,lxvi.lxvii. Furthermore, another recent study revealed that PEMFs stimulate 
osteogenic differentiation and maturation of osteoblasts by primary cilium-mediated upregu-
lated expression of BMPRII, one of the receptors of BMPs, and subsequently activation of 
BMP–Smad1/5/8 signalinglxviii. Given the separate promotional effects on the differentiation 
and maturation of osteoblasts of BMPs and PEMFs, many studies found that combined BMP 
and PEMF stimulation would augment bone formation to a greater degree than treatment 
with either stimuluslxix,lxx,lxxi,lxxii.



Other pathways
IGF signaling pathway is also an important signaling implicating in osteoblast differentiation 
and bone formationlxxiii,lxxiv. It was reported that PEMFs significantly increase the level of mRNA 
expression of IGF-1 and promote bone formation in rat femoral tissues in vitrolxxv. In addition, 
IGF-1 in combination with PEMFs augmented cartilage explant anabolic activities, increased PG 
synthesis, restricted the catabolic effect of IL-1b, and showed a synergistic chondroprotective 
effect on human articular cartilagelxxvi. Another study showed that dexamethasone combined 
with PEMF upregulated the mRNA expression of IGF-1 and improved dexamethasone-induced 
bone loss and osteoporosislxxvii. Notch signaling is a highly conserved pathway that regulates 
cell fate decisions and skeletal development. A recent research advocated that the expression 
levels of Notch receptor (Notch4) and its ligand DLL4 and nuclear target genes (Hey1, Hes1, 
and Hes5) were upregulated during the PEMF-induced osteogenic differentiation of hMSCs. 
Moreover, the Notch pathway inhibitors effectively inhibited the expression of osteogenic 
markers, including Runx2, Dlx5, Osterix, as well as Hes1 and Hes5, indicating that the Notch 
signaling plays an important regulatory role in PEMF-induced osteogenic differentiation of 
hMSCslxxviii. The cAMP/PKA signaling pathway is another signaling involved in the PEMF-
induced bone repair. Recent studies have demonstrated that PEMFs notably increased the 
cAMP level and PKA activity and accelerated the osteogenic differentiation of MSCsxxvii,xxxiv,lxxix.

Therapeutic applications of PEMF in bone repair

The promotional effects of PEMFs on osteogenesis and angiogenesis in bone repair have 
been well established in either vitro or in vivo animal studies. Several key-signaling pathways 
involved in PEMF-induced bone repair were elaborate above. Moreover, several decades 
of PEMF applications in the treatment of skeletal diseases have clearly proved its potential 
benefit in augmenting bone repair.

Osteoporosis
Osteoporosis is a worldwide health problem with high morbidity, especially in postmeno-
pausal womenlxxx,lxxxi,lxxxii. It is generally defined as a systemic skeletal disease characterized 
by low bone mineral density (BMD) and compromised bone strength, leading to enhanced 
bone fragility, increased fracture risk, and resultant disability, which strikingly affects patients’ 
quality of lifelxxxiii,lxxxiv. As PEMFs were verified to be equally effective with mechanical stimu-
lation in maintaining or improving bone mass according to experiments of NASA between 1976 
and 1979, many clinical studies have gradually achieved positive therapeutic effects for osteo-
porosis by PEMF exposurelxxxv,lxxxvi,lxxxvii,lxxxviii,lxxxix,xc,xci. Chronic pain is a common symptom of 



people with osteoporosis. Many randomized controlled trials indicated that PEMF exposure 
could relieve chronic pain caused by osteoporosislxxxii,lxxxiii. Moreover, in a study of 126 patients 
with primary osteoporosis, PEMF provided a faster and significant effect in relieving pain 
for patients with type I osteoporosis than those with type II84. BMD is the gold standard for 
diagnosing osteoporosis and the best quantitative indicator for forecasting the risk of osteo-
porotic fracture, monitoring the natural course of osteoporosis, and evaluating the effect of 
osteoporosis. Tabrah indicated that BMD of the treated radii was elevated notably in the sixth 
week in a clinical study of 20 women with PMOP treated with PEMFslxxvi. In Garland’s research, 
which evaluated the effect of PEMFs on knee osteoporosis in individuals with spinal cord injury, 
BMD was also elevated. At three months, BMD was increased by 5.1% in the stimulated knees 
but declined to 6.6% in the control kneeslxxvii. PEMFs as a noninvasive physical therapy method 
avoids the defects of pharmacotherapy for osteoporosis, including the multiple side effects, the 
more cost and the low persistence. More importantly, a randomized, active-controlled clinical 
trial on postmenopausal osteoporosis (PMO) in Southwest China revealed that PEMFs had the 
same effect as alendronate, which is, currently, the most commonly prescribed medication 
for treating PMO within 24 weeksxciii. Furthermore, the hemorheological safety of PEMFs for 
treating osteoporosis was also observed by a randomized, placebo-controlled clinical studyxciv. 
All these results support the efficiency and safety of PEMFs for osteoporosis treatment and as 
an advantageous treatment strategy in the future.

Fractures, delayed unions, and non-unions
Fractures, particularly those that had developed into delayed unions or even non-unions, have 
a substantial clinical, economic, and quality of life impact . Apart from traditional surgical 
management and rigid fixation (either internal or external), noninvasive PEMFs have already 
been used effectively in clinics as physical therapy to accelerate and finalize the healing process 
of a fresh fracture and reactivate the healing process of delayed unions and non-unions for 
nearly forty years since they were first approved by the US Food and Drug Administrationiv,v. 
A recent systematic review and meta-analysis of randomized controlled trials showed that 
PEMFs significantly shortened the time to radiological union for acute fractures undergoing 
non-operative treatment and acute fractures of the upper limb and accelerated the time to 
clinical union for acute diaphyseal fracturesxcvi. Moreover, a prospective study that evaluated 
the treatment effect of PEMFs on 64 patients undergoing hindfoot arthrodesis (144 joints) 
revealed that the adjunctive use of a PEMF in elective hindfoot arthrodesis may increase 
the rate and speed of radiographic union of these jointsxcvii. Despite the relative scarcity of 
well-organized randomized controlled trials, many studies highlight the practice usefulness 
of PEMFs in treating tibial delayed unions or non-unions, with efficacy up to 87%vi,lxxv,xcviii,xcix. 
Furthermore, in a broad literature review comparing PEMF treatment of non-unions with 
surgical therapy, Gossling noted that 81% of reported cases healed with PEMF versus 82% 
with surgery. Obvious therapeutic advantages of PEMFs were showed compared with surgery 
in treatment for infected non-unions (81% versus 69%)c and closed injury caused non-unions 
(85% versus 79%) . In addition, a recent double-blind randomized study advocated that the 
adjunctive use of PEMF for fifth metatarsal fracture non-unions significantly shortened the 
average time to complete radiographic union from 14.7 weeks to 8.9 weeks compared with 



the control group without PEMF exposure; the elevated expression levels of PIGF, BMP-5, and 
BMP-7, key regulators of angiogenesis and osteogenesis, were first detected in the non-union 
environment before and after the application of PEMFslviii. These studies strikingly support 
PEMFs as an optional and effective method to accelerate fracture healing.
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